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Abstract: This paper describes a new approach for identifying autoregressive models from a finite number of

measurements, in presence of additive and uncorrelated white noise. As a major novelty, the proposed approac
deals with frequency domain data. In particular, two different frequency domain algorithms are proposed. The

first algorithm is based on some theoretical results concerning the so—called dynamic Frisch Scheme. The secon
algorithm maps the AR identification problem into a quadratic eigenvalue problem. Both methods resembile in

many aspects some other identification algorithms, originally developed in the time domain. The features of the
proposed methods are compared each other and with those of other time domain algorithms by means of Monte
Carlo simulations.
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1 Introduction In many practical situations, however, simple AR

i . models are not adequate since the signals are cor-
Autoregressive (AR) models are commonly used in nted by noise. In these cases, classical AR identi-

the field of spectral analysis and find applications in  fication methods give misleading resuits; in fact it can
a wide range of engineering problems, like, for exam- e proved that the estimated AR poles are biased to-
ple, speech analysis, radar and sonar systems, vibra-yyarq the center of the unit circle, leading thus to a
tion monitoring, astronomy, geophysics and seismol-  gmqothed spectrum [4].

ogy.

In spectral analysis literature [1, 2, 3] two dif- Several approaches have been developed to re-
ferent methodologies are usually described. The COVer the AR parameters from noisy measurements.
first methodology contains the classical nonparamet- SINCe NOisy AR processes admit an equivalent ARMA
ric approaches, involving periodogram and correlo- representation [51, t_he usual approaches for solving
gram methods. The second methodology contains thls proble_m consist in standard ARMA parameter es-
the parametric approaches, also called model-based. fimators, like prediction errors methods [6].

These methods postulate a model for the data, that  Another classical approach for the identification
constitutes a means for parameterizing the spectrum. of AR plus noise models consists in solving the so—
The spectral estimation problem is thus reduced to the called high—order Yule-Walker (HOYW) equations
estimation of the parameters of the model. [7]. This method requires the knowledge of the auto-

Both methodologies may offer advantages and correlation function for high lags and is characterized
disadvantages in order to obtain an accurate spectrum by a poor estimate of the parameters. To compen-
estimation with high resolution. They can be distin- sate the estimation errors, an overdetermined set of
guished by the fact that nonparametric methods treat HOYW equations is often considered [8]. In [9, 10] it
frequency domain data, while parametric methods are has been shown that better results can be obtained by
commonly developed in the time domain. using both low and high order YW equations. Start-

Within the class of parametric methods, AR mod- ing from this set up, in [11] a new method has been
els are widely used since they constitute the simplest proposed, related to signal/noise subspace techniques.
description of a stochastic process and offer the possi- This approach uses a modified set of low and high
bility for simple and fast parameter identification pro- order YW equations and maps the original problem
cedures, based on least squares estimation schemes. into a quadratic eigenvalue problem. The estimates of

E-ISSN: 2224-3488 219 Volume 12, 2016



WSEAS TRANSACTIONS on SIGNAL PROCESSING Umberto Soverini, Torsten Séderstréom

the AR parameters and of the noise variance are thus frequency domain approaches allow to solve in a more
obtained by solving the associated generalized eigen- direct and simple way all the problems where a trade—
value problem. off between frequency resolution and noise level is
A different approach has been proposed in [12, present. This feature can be of great advantage in the
13, 14]. In these papers the AR plus noise iden- identification of noisy AR processes with narrowband
tification problem is solved by using the theoreti- spectrum, as will be illustrated by a numerical exam-
cal results concerning the so—called dynamic Frisch ple.
Scheme [15, 16] which was originally developed for The organization of the paper is as follows. Sec-
the identification of errors—in—variables systems. tion 2 defines the AR plus noise identification prob-
In this work the identification of AR systems cor- lem in the frequency domain, while Section 3 intro-
rupted by additive white noise is addressed by using duces a novel frequency domain description of the
a frequency domain approach. In particular, two dif- AR processes. In Section 4 the identification prob-
ferent frequency domain algorithms are proposed and lem is reformulated as a Frisch Scheme problem and
their features are compared with each other and with the search for the solution is analyzed within this con-
those of other time domain methods. text. Sections 5 describes a possible identification cri-
In presence of non—periodic signals of finite terion, that can be directly formulated in the frequency
length, leakage problems have been always consid- domain. In particular, this criterion takes advantage
ered to be the major drawback for frequency domain of a set of equations similar to the HOYW equations.
methods. In fact, leakage errors are present even in ab- For this reason the method can be considered the fre-
sence of disturbing noise. In this respect, an important quency counterpart of the time domain approach pro-
result has been given in [17], where it has been proved posed in [13, 14]. In Section 6, it is shown how the
that for a linear, discrete—time system, described by a AR identification problem can be reformulated as a
rational transfer function of finite dimensions, the dis- quadratic eigenvalue problem involving only the out-
crete Fourier transforms (DFTs) of the input—output put noise variance. The obtained quadratic eigenvalue
signals are exactly linked by an extended model that problem is thus solved by mapping it into a gener-
includes also a polynomial term of finite order, that alized eigenvalue problem. The method can be con-
takes into account the leakage and transient effects.  sidered the frequency counterpart of the time domain
From a theoretic point of view, this result has been approach proposed in [11]. In Section 7 the effective-
formalized in [18], where the full equivalence be- ness of the proposed methods is verified by means of
tween time and frequency domain identification meth- Monte Carlo simulations. It is shown that this new
ods has been proved, also for finite data records. How- frequency domain methodology is characterized by
ever, from the practical point of view, the decision to high frequency resolution properties and is particu-
implement a time or a frequency domain algorithm larly suited for the identification of narrowband AR
can strongly depend on the user choices and on the systems with close and sharp spectral peaks. Finally
specific applications. some concluding remarks are reported in Section 8.
Frequency domain technigues for system identi-
fication are described in [19]. In most experimental
situations the observations are collected as samples of 2 Statement of the problem
time signals, so that a Fourier transformation is re- cqngjder the following noisy AR model, of order
qwr_ed before |mplementlng a frequ_ency_ dom_aln al-  gescribed by the equations
gorithm. However, there exist occasions in which the

data are more easily available as frequency samples. (1) = —ay z(t — 1) — - -+ — ap 2(t — n) + e(t)
For example, in some experimental situations it may (1)
occur that the data are collected by a frequency ana-

lyzer which directly provides the Fourier transforms ~ ¥(t) = 2(t) + w(t) )

of the time signals. This situation is particularly com-
mon in vibrational analysis of mechanical systems
[20].

Frequency domain approaches are characterize
by some specific features that are not present in the
time domain methods [21]. In particular, in the fre- A1 ¢(4) is a zero-mean ergodic white process, with
quency domain the filtering operations are quite sim- unknowrvariances™.
ple to implement, in fact they can be reduced to the se- ¢
lection of appropriate (weighted) frequencies inalim- A2. The ordern of the AR model is assumed as
ited band of the signal spectrum. As a consequence, priori known.

wherez(t) is the output of the noise—free AR model,

driven by the white noise proces§t). The available
4 observationy(t) is affected by the noise process$t).
The following assumptions are made.
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A3. The additive noisev(t) is a zero—mean ergodic
white process, uncorrelated witlt), with un-
knownvariances;,.

Let {y(t)})¥;;! be a set of noisy observations At
equidistant time instants. The corresponding Discrete
Fourier Transform (DFT) is defined as

N-1
1 .
Y(wp) = —= Y y(t) e, 3)
UF >
wherewy, = 27k/N andk =0, ..., N —1. In the fre-

guency domain, the problem under investigation can
be stated as follows.

Problem 1. LetY (wy) be a set of noisy measurements
generated by an AR plus noise system of type (1)—
(2), under assumptions A1-A3, wherg = 27k/N
andk = 0,..., N — 1. Estimate the AR parameters
a; (i =1,...,n)and the noise variances, o,.

3 A frequency domain setup

In this section a new frequency domain description for
the noisy AR model (1)—(2) is introduced. This setup
has been originally developed in [22, 23, 24] with ref-
erence to the identification of errors—in—variables sys-
tems.

Equation (1) can be rewritten as

Az Ha(t) = e(t) (4)

where A(z~!) is a polynomial in the backward shift
operatorz—!

AN =14az 4+ +a,z ™  (5)

Similarly to equation (3), letF'(wy), X (wi) be
the DFTs of the signals(t), x(¢) appearing in equa-
tion (4). It is a well-known fact [17] that for finitéV,
even in absence of noise, the DFA'&v;) and X (wy,)
exactly satisfy an extended model that includes also a
transient term, i.e.

A(e™%) X (wp) = E(wg) +T(e77F),  (6)

whereT'(z~1) is a polynomial of ordern. — 1

1

T(z_l) =to+mz 4T 2 (D)

that takes into account the effects of the initial and
final conditions of the experiment.

By considering the whole number of frequencies,
eg. (6) can be rewritten in a matrix form. For this
purpose, introduce the parameter vectors

T

(8)
9)

O =[lag ...y
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and define the following vecto®, with dimension
p = 2n + 1, containing the whole number of parame-
ters

0=[65 —07]". (10)

In absence of noise, the AR parameters can be recov-
ered by means of the following procedure. Define the
row vectors

e~ n=Dwi q=jnen |
(11)
12)

Zni1(wp) = [1 e 9%k .,

Zn(wk) = [1 e Wk e_j(”_l)wk ]’

whose entries are constructed with multiple frequen-
cies ofwy,, and construct the following matrices

Zn1(wo) Zn(wo)

H = \I/ = .
Znps1(wn-1) Znp(wN-1)

(13)
of dimensionN x (n + 1) and N x n, respectively.
With the DFT samples( (wy,) construct the following
N x N diagonal matrix

V' = diag[X (wo), X(w1), ..., X (wn-1)] (14)

and compute thé&/ x (n + 1) matrix

My = V&1L (15)
Then, construct thé&vV x p matrix
by =[x | V] (16)

Thus, eq. (6) fork = 0,..., N — 1 can be rewritten
as

dx 0 =Vg, a7
whereVg = [E(wo), E(w1),. .., E(wy_1)]T.
Define now they x p matrix
1
Uy = 5 (X 2x), (18)

where(-)¥ denotes the transpose and conjugate oper-
ation.

Because of assumption Al, whéh — oo, from
(17) it follows that

Yx 0 =0, (19)
whereX x is defined as
Sx =Yx —diag[o}0...0]. (20)
2n
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Remark 1. Sincex(t) is generated by the AR model
(4), relation (6) cannot be satisfied by a polynomial
A(z~1) with order lower tham. Therefore, matrix
¥ x in (20) is positive semidefinite, with only one null
eigenvalue, i.e.

x>0 dimker Xy = 1. (21)

In presence of noise, the previous procedure can be
modified as follows. With the DFT samples (3) con-
struct theNV x N diagonal matrix

V49 — diag [Y (wo), Y (w1), ..., Y (wn-1)] (22)
and compute the matrix
My = V9] (23)
Then, construct thé&/ x p matrix
Oy = [Iy | ¥]. (24)

Because of Assumptions A3, whévi — oo, we ob-
tain the followingp x p positive definite matrix

05 Iy 0

where0,, is the null square matrix of dimension
By combining (20) and (25), it follows that

1
ZY:N((I)g(I)Y) =Yx+ {

Yy = Sx + X%, (26)
where
3 fo 0 0
=10 oI, 0 (27)
0 0 0
and
oy =0, +0.. (28)

From (19) and (26), the parameter vectdy defined
in (10), can be obtained as the kernel of

(Zy —Z) e =0,
after normalizing the first entry to 1.

(29)

Remark 2. It can be observed that fok =
0,...,floor (%)
;N1
Y(w N-ol-kory
(WN—1-k) =75 2 y(t
<1Jrk)me

Z

whereY*(-) is the conjugate of (-). Consequently, a
redundant information has been used in the definition
(25) of Xy and only the firstV/2 samplesY (wy),

k =0,...,floor (%), could be considered. How-
ever, from simulation experiences the usage of the
whole data seY (wg), k =0,..., N — 1, leads to bet-
ter results, especially under the conditions described
in Remark 3.

=Y (wl—l-k) 9 (30)
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4 Analysis in the Frisch Scheme con-
text

Starting from knowledge of the noisy matry-, the
determination of the system parameter veéoand
of the noise variances;, o}, can be seen as a Frisch
Scheme problem [15, 16].

Consider the set of non—negative definite diagonal
matrices of type

S = diag [ 05, 0w In, 0y, ] (31)

such that

Sy —¥>0  det(Sy —%)=0. (32
The following statements can be proved. The proofs

can be found in [15] and [25].

Theorem 1. The set of all matriceX satisfying con-
ditions (32) defines the poin®8 = (o, 0y,) Of a con-
vex curveS(Xy ) belonging to the first quadrant of the
noise spac&k? whose concavity faces the origin. At
every pointP = (o, 0,,) €can be associated the noise
matrix $(P) and the coefficient vectd®(P) satisfy-
ing the relation

(zv = 3(P)) 6(P) = 0.0 (33)
Theorem 2. Because of the relations (27)—(29), the
point P* = (o}, 0}), associated with the true vari-
ances ok(t) andw(t), belongs taS(Xy ) and the cor-
responding coefficient vect@ (P*) is characterized
(after a normalization of its first entry ) by the true
system parameter vector, i®(P*) = 0. ¢

In Figure 1 an example of(Xy) is reported.
Note that the point$o, o,,) of the curve witho, <
oy (dotted line) are non admissible because they do
not satisfy the conditiom, = o, — o, > 0. The set
of admissible solutions (continuous line) is thus de-

limited by the straight lines,, = o, ando,, = 0.

Theorem 3. Partition the matrixy as follows

Sy = [0’11 E12}

34
Yo1 Moo (34)

whereX,, is the square matrix of dimensi@n. The
intersection ofS(Xy) with the o, axis is the point
Pp = (0" ,0) given by the least squares solution

det (Ey)
mar — 2 35
s det (222) ( )
Partition the matriX_y instead as follows
X1 E12}
Yy = 36
Y [221 Y99 (36)
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J distinct sets of frequencies are jointly considered, the
! | setW = [w;, wy], withi > 0 and f < floor (&51)

and the selVy = [wy_1_ ¢, wn—1-4], for atotal num-
ber of the2L frequencies, with, = f —i + 1. By
considering a new matri®y with 2L rows, expres-
sions (25)—(27) must be modified as follows

w

variance o,

1 _ -
Yy = ﬁ(qﬁ Py) =Sy + X%, (41)
where
x 0 0
. N |
00 0‘5 ‘1 1‘5 ‘2 2‘5 é 3‘5 JL 4‘5 fDB 55 E* - ﬁ 0 O-Z) In O ’ (42)
: ’ v‘ariam:eoS ' ’ ’ 0 0 07’7,
Figure 1: Typical shape &f(Xy ). 5 A criterion based on HOYW-type
equations
whereX.o; is the square matrix of dimension The As asserted in Theorem 2, the determination of the
intersection ofS(Xy ) with the straight liner,, = o point P* onS(Xy ) leads to the solution of Problem 1.

is the pointP4 = (o7,/**, o7'*"), given by the solution For this purpose a search criterion must be introduced.
Unfortunately, the theoretic properties 8%y ) de-

om =min eig (S11 — L1285y Xo1).  (37) scribed so far do not allow to distinguish the pafrit
from the other points of the curve.
Since the pointP, corresponds te, = 0, it is not a In this section we will describe a possible search
solution of Problem 1.0 criterion. This criterion is analogue to that reported

The next theorem describes a parametrization of in [13] with reference to time domain identification of
the curveS(Xy) that plays an important role in the AR plus noise models.

practical implementation of the identification algo- Select the integeg > 2n. Analogously to (11),
rithm [16]. consider the row vector

Theorem 4. Let ¢ = (&1,&2) be a generic point of iy it

the first quadrant ofR? andr the straight line from Zgpnii(wp) = [Le79r e/ HOe] (43)

the origin througlt (see Fig. 1). Its intersection with

S(Sy) is the pointP = (o4, 0 ) given by and extract from it thg—dimensional row vector

S . (38) Zh(wp) = [0 oI (44)
Au AM Then, construct the followingvV x ¢ matrix
where
e Z(wo)
_ . 1 q 0
)\]y[ = max €e1g (ZY Zg) (39) Hh _ ‘ (45)
Zh(wN_l)
) & 0 0 !
Ye=10 &I, 0.0 (40) and compute théV x ¢ matrix
0 0 On h diag 11h
Ot =Vy 911" (46)

Remark 3. The described procedure allows to con-

struct the curveS(Xy) in the noise spacéos, oy) Define now they x p matrix

also when only a subset of the whole frequency range 1

is used, on condition that the number of the selected > = N(@}}()H Px), (47)
frequencies is large enough. This subset must be cho-

sen by the user on the basisapriori knowledge of Because of assumption A1, whé&h — oo, it follows
the frequency properties of the AR model. In practice, that

taking into account the observations of Remark 2, two Z’}( 0 =0. (48)
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In an analogous way, we can compute g g matrix whereo; is a scalar anlss, Y33 are square matrices
. diag 1 of dimensionn.
Oy = V"Il (49) By analyzing the structure of matrix (27), it can

be observed that, whe¥ — oo, the last2n equations

and define thg x p matrix in (29) can be written as
sh - %((@{;)H By). (50) So1 Sop— 0% L, Sy
, _ Y31 Y32 233

Because of Assumptions A3, whéh — oo, it results

©=0. (55)

Equation (55) containgn + 2 unknowns, i.ec};, and
>t =3k, (51) the entries 0f®. By choosingg > 2, the equations
(52) can be combined with the equations (55) in or-
der obtain the following nonlinear system &f + ¢

0@ = 0. (52) equations
Yo1 Moo —ogpl, Xo3

It is thus possible to write

Equation (52) constitutes a set gfequations, ana-

logue to the time domain high order Yule—Walker %31 32 Y33 ©=0. (56)
equations, that does not involve the output noise vari- E’{V
anceo;,. ) ) )
S(Xy) can be performed by introducing the following _ a _
cost function (8 =0y J)© =0, (57)
J(P) = |she(p)3 =Pt sher). e
(53) [Y91 Yoo Yo
Wheng > 2n the cost function/(P) in (53) exhibits S= 231 T3 T (58)
the following properties 2;{/
I) J(P) >0 [Onx1 I On
iy J(P)=0& P=P* J=|Onx1 On On]. (59)
L Ogx2n+1)

In fact, if ¢ > 2n the conditions stated in [26] hold
and the equation (52) admits a unique solution, corre- Multiplying both sides of (57) byS — o, J)T leads

sponding to the true system parameger to the equation
On the basis of the previous considerations, it is
possible to develop an algorithm for the identification (AgoZf + Aol + Ag) © =0, (60)

of AR plus noise models. A detailed description of
the procedure can be found in [25]. In the following Where
this algorithm is denoted as Alg1-FD.

Ag=STS (61)
Ay =—(STT+J7S) (62)
6 A subspace approach Ay = JTJ. (63)

The approach proposed in this section is analogue to - _ )
that described in [11] and exploits the set of equations The coefficients 06 can thus be estimated by solving
(52) together with the equations (29). It will be shown the following quadratic eigenvalue problem (QEP)
that the AR plus noise identification problem can be 9 B

mapped into a quadratic eigenvalue problem that, in (A2 A* + A1 A + 4p) v =0. (64)

turn, can be solved as a generalized eiggnvalue_prob- The set ofin + 2 eigenvalues solving (64) are real or
lem. The system parameters are thus estimated in ON€ gppear in complex conjugate pairs and can also be in-

shot, without any search procedure. finite [27]. If the system is identifiable and the number
Letus partition matrix’y, defined in (25), asfol- ¢ gata N — oo, the only real eigenvalue (with multi-
lows plicity two) that solves (64) i\ = o7 [11]. It is thus
o Y12 X3 possible to conclude that the solution of the identifi-
Yy = |Xa1 Yoo Xos|, (54) cation problem is the eigenvector associated with the
Y31 Y32 Xas only real eigenvalue that solves (64).
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The QEP (64) can be solved in several ways [27].
The easiest way to solve it consists in rewriting equa-
tion (64) as

Ay X+ Ajv X+ Agv =0, (65)
wherev’ = Awv. Thus, the following 4n + 2)—

dimensional linear generalized eigenvalue problem
(GEP) can be derived [27]

(P=AQ)n=0, (66)
where
4y 0
P= [ 0 f2n+1] ©7)
AL A
S (68)
n= [UT U/T]T. (69)

The only real eigenvalue solving (66) ¢s, and the
first 2n + 1 entries of the corresponding eigenvector
n* are, after a normalization of the first entry to 1, the
entries ofo, i.e.

—[eT o207

(70)

Since only a finite numbelN of data is available, all
the eigenvalues solving (66) will exhibit, in general,
a small imaginary part. A criterion leading to good
results consists in choosing the eigenvalue having the
smallest modulus [11].

On the basis of the previous considerations, it is
possible to develop a second algorithm for the identi-
fication of AR plus noise models. A detailed descrip-
tion of the procedure can be found in [25]. In the fol-
lowing this algorithm is denoted as Alg2-FD.

7 Numerical examples

In this section, the effectiveness of the proposed iden-
tification algorithms is tested by means of numerical
simulations.

Example 1. The proposed algorithms have been
tested on sequences generated by the following AR
model of ordem = 4, already considered in [13]

2(t) =24zt — 1) — 3.03z(t — 2) + 1.986 (¢ — 3)
— 0.6586 2(t — 4) + e(t), (71)

wheree(t) is a white noise with variance’ = 1.
A Monte Carlo simulation of 100 runs has been
performed by using, in every rutN = 1000 samples
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of the noisy outputy(¢). The variance of the obser-
vation noise isr;;, = 4, corresponding to a Signal to
Noise Ratio (SNR) of about 10 dB, where the SNR is
defined as

dB.

(72)
Table 1 reports the empirical means of the system pa-
rameter estimates and of the noise variance estimates,
together with the corresponding standard deviations,
obtained with Alg1l-FD, and with Alg2-FD. The re-
sults are also compared with those obtained by the
corresponding time domain algorithms described in
[13] and [11] respectively, and denoted with Alg1-TD
and Alg2-TD.

The table shows the results obtained wheis
equal to the minimum number of equations required
for the algorithms’ implementation. It can be ob-
served that Alg1l-FD and Alg1-TD yield comparable
results. Moreover, it can be noted that Alg2-FD does
not yield satisfactory results whenis fixed to the
minimum admissible value (third line in the Table).
However, it is sufficient to selegt = n for obtaining
parameter estimates that are comparable with those
obtained by Alg2-TD and by the other methods.

In Table 1, the last column reports the mean value
(in ms) of the time requested to carry out a single run
of the Monte Carlo simulation. This value strongly
depends on the specific features of the PC used for
the simulations and, moreover, it may slightly change
in different Monte Carlo sessions. However, it pro-
vides the correct order of magnitude of the computa-
tional efficiency of the algorithms and allows to make
a comparison of their performances.

It can be observed that the estimation accuracy
of the frequency domain algorithms Algl-FD, Alg2-
FD is comparable to that of the corresponding time
domain algorithms Algl-TD, Alg2-TD. However, as
far as the computational efficiency is concerned, it
must be observed that Alg2 is always much faster than
Algl, both in time and frequency domain. Moreover,
the time domain algorithms are, approximatively, 4—5
times faster than the corresponding frequency domain
implementations. Of course, in this respect, particular
attention must be given to the coding. For example,
it is worth noting that matriceBly (23) and®? (49)
must not be computed with the reported expressions,
since they are highly time consuming.

It can be conjectured that the major computational
burden for the frequency domain approaches is mainly
due to the following two facts: the preliminary DFT
operations on the data and the computations devel-
oped in the complex domain. This aspect is highly
compensated by the fact that in the frequency do-

r2(0)

w
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Table 1: True and estimated values of parameters and variances for Alg1l-FD, Alg2-FD and Alg1-TD, Alg2-TD.
SNR= 10 dB andN = 1000.

aq ag asg ay ol o Time (ms)
true —2.4 3.03 —1.986 0.6586 1 4
Algl — FD (g = 8) —2.3794 £+ 0.1152 2.9969 + 0.1693 —1.9569 £+ 0.1278 0.6563 £ 0.0281 1.0921 + 0.3272 4.0135 £+ 0.1561 31.5
Algl — TD (q = 4) —2.3864 4+ 0.0325 3.0049 + 0.1071 —1.9613 £ 0.1369 0.6553 £ 0.0960 0.9912 + 0.0546 3.9646 + 0.2184 8.0
Alg2 — FD (¢ = 2) —2.3158 + 0.5049 2.9086 + 0.8811 —1.8920 £+ 0.7709 0.6461 + 0.2497 1.5656 + 2.9957 3.9568 + 0.2557 4.5
Alg2 — FD (¢ = 4) —2.3913 4+ 0.0367 3.0267 £ 0.0776 —1.9877 £+ 0.0754 0.6714 £ 0.0366 1.0049 £ 0.4341 3.9769 £ 0.2297 5.5
Alg2 — TD (g = 4) —2.3924 + 0.0376 3.0234 + 0.0732 —1.9824 + 0.0688 0.6672 £ 0.0317 1.0256 + 0.3870 3.9758 + 0.2130 1.2

Table 2: True and estimated values of the AR parameters for Alg1-FD, Alg2-FD and Alg1-TD, Alg2-TDaSNR
10 dB andN = 1000.

aq g asg gy Time (ms)

True values —2.7607 3.8106 —2.6535 0.9238

Algl —FD (¢ =8) F; =[0 0.5] —2.0911 4 0.5938 | 2.4295 + 1.3386 —1.3965 + 1.3103 | 0.5162 £ 0.5371 35.0
Algl —TD (g = 4) —2.3307 &£ 1.5771 2.7119 £ 3.9835 —1.5336 + 4.0573 | 0.4498 £ 1.7307 28.2
Alg2 —FD (¢ =4) F; =[0 0.5] —2.1589 £ 1.2050 | 2.8041 &+ 2.3264 —1.8611 + 2.1528 | 0.7729 £ 0.8505 5.6
Alg2 — TD (g = 4) —2.7820 4 0.5854 | 3.9006 + 1.0575 —2.7603 + 0.9029 | 0.9813 + 0.2983 1.2
Algl — FD (¢ =8) F; =[0.05 0.2] —2.7223 £ 0.0188 | 3.7624 £ 0.0315 —2.6323 + 0.0247 | 0.9372 £ 0.0053 29.0
Alg2 — FD (¢ =4) F; =[0.05 0.2] —2.7434 4+ 0.0802 | 3.7865 + 0.2156 —2.6415 + 0.2341 | 0.9305 £ 0.1232 2.6

wheree(t) is a white noise with variance® = 1.

The model (73) exhibits two pairs of com-
plex poles, withp; o, = 0.98e*7 %% andpgy =
: 0.98e%7 088 |t describes a narrowband AR system

. with close and sharp spectral peaks, at the frequencies
AN ] f1=0.69/(2r) = 0.11 and fo = 0.88/(27) = 0.14
(see Fig. 2).

or A 1 This model is particularly difficult to identify un-
e AN der low SNR conditions and poor estimates of the sys-
of ; ; S 1 tem parameters are obtained if the SNR is lower than
' ' p— 10 dB.

""""""" R As a proof of this assertion, a first Monte Carlo
e simulation of 100 independent runs have been carried
C 0 Nomamstheeny out, by considering noisy sequences df = 1000

samples. The variance of the observation noise has
Figure 2: True TF: red, SOlld, Algl-FD estimate: been fixed tm—;“u = 90, Corresponding to a SNR of
green, dashed; Alg2-FD estimate: blue, dash—dotted. about 10 dB.
The first four lines of Table 2 report the empiri-
cal means of the system parameter estimates together

. . i ) ) with the corresponding standard deviations, obtained
main the filtering operations can be implemented in a \yith the considered methods. For the sake of sim-

straightforward way, with great benefits for the iden- plicity, the estimates of* ando*, are not reported. It

tification, as it will be shown in the next example. can be observed that Alg1-TD, Alg1-FD and Alg2-FD

Example 2. In order to verify the selective properties  have unsatisfactory performances, with bad estimates

described in Remark 3, the following AR model of of the parameters, while Alg2-TD exhibits a greater

ordern = 4, also proposed in [9], has been considered robustness against noise and still yields a satisfactory
result.

z(t) = 2.7607x(t — 1) — 3.8106 z(t — 2) In the previous simulations all the availablé
data, in the whole frequency ranfe 0.5, have been
+2.6535(t - 3) — 0.9238(t — 4) +e(t), used for the identification. However, it can be ob-
(73) served that the frequency domain methods Algl-FD

sof : : 1

60 - - 4

Magnitude (dB)
~
——

—20}
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Table 3: True and estimated values of the AR parameters and vatiaficeAlgl-FD and Alg2-FD. SNRx —5

dB andN = 1000.

il a2

as ay ol Time (ms)

True values —2.7607 3.8106 —2.6535 0.9238 1

Algl —FD (¢ =8) F; =[0.05 0.2] —2.5223 + 0.0360 | 3.3818 + 0.0469 —2.3656 + 0.0303 | 0.8805 4 0.0110 —— 35.0
Alg2 — FD (¢ =4) F; =[0.05 0.2] —2.5137 £ 0.2086 | 3.3189 + 0.4673 —2.2576 £+ 0.4652 | 0.8126 + 0.2287 —— 2.6
Algl —FD (¢ =8) F; =[0.08 0.16] —2.8217 £ 0.0178 | 3.9402 + 0.0254 —2.7838 +0.0171 | 0.9734 % 0.0039 —— 32.5
Alg2 — FD (¢ =4) F; =[0.08 0.16] —2.8046 £ 0.0875 | 3.8866 + 0.2017 —2.7181 £ 0.1996 | 0.9400 + 0.0851 1.0465 £ 0.6050 2.0

and Alg2-FD yield good parameter estimates when
the AR model is identified by using only the data be-
longing to specific frequency windows defined by the
user,Fy = [f;, fr]andFy, = [1 — fr, 1 — f;], with
fi=wi/(2r) > 0andf; = ws/(2m) < 0.5.

The choice offy (and Fy) must be linked to the
spectral properties of the AR system to be identified.
In particular, for the considered example, the window
F7 will contain the two frequencieg; and f, that
characterize the four poles of model (73).

In order to verify this property, the AR system
has been identified by using only tBé& = 300 fre-
quencies in the windowsy = [f;, ff] and F, =
(L — ff, 1 — fi], wheref; = 0.05 and f; = 0.2. The
last two lines of Table 2 report the identification re-
sults obtained with Algl-FD and Alg2-FD. It can be
noted that in this case both methods give good esti-
mates of the AR parameters. Observe that the compu-
tational efficiency of the algorithms is now improved,
since only2L, < N data are used for the identification.

The choice of the width of the window is
linked to the value of;,. When more amount of noise
w(t) is present on the data then marpriori informa-
tion about the spectral properties of the AR system is
required. In particular, for the considered example,
whengoy}, increases a more accurate information about
the exact positions of; and f; is required.

As a proof of this assertion, two further Monte
Carlo simulations of 100 independent runs have been
carried out, withN = 1000. In this case, however,
the variance of the observation noise has been fixed to
o, = 2700, corresponding to a SNR of aboubt dB.

Of course, under these very low SNR conditions also
Alg2-TD completely fails the estimates; the results are
not reported.

In the first simulation the AR system has been
identified by using the same windaity = [0.050.2],
as before. In the second simulation a more narrow
window F; = [0.08, 0.16] has been used, with a total
number of2. = 160 frequencies.

The results of these simulations are reported in
Table 3. It can be observed that in the first simulation
both methods yield worse estimates for the AR param-
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eters, while in the second simulation they give good
estimates, again. As a concluding remark, note that
Alg2-FD has to be preferred to Algl-FD. Not only
it is faster, but it gives also a correct estimatesf
while Alg1l-FD completely fails this estimate, with a
consequent error for the static gainiof|A(e7«*)],
see Fig. 2. The estimates@f, are not reported, since
they are completely wrong.

With reference to the last simulation, Figure 2 re-
ports the true value of/ | A(e~7“*)|;5, together with
the means of the transfer function estimates, obtained
with Alg1-FD and Alg2-FD. The advantageous effects
of filtering are evident for both methods, in fact they
succeed in the identification of the two peaks at the
frequenciesf; and f5.

8 Conclusions

In this paper a novel frequency domain approach has
been proposed for the identification of AR models af-
fected by additive white noise. In particular, two dif-
ferent frequency domain algorithms have been pro-
posed and their estimation properties have been tested
and compared by means of Monte Carlo simulations.
The numerical results have confirmed the good perfor-
mances of the new methodology and have shown its
effectiveness in the identification of narrowband AR
systems with close and sharp spectral peaks.
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