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Abstract: This paper describes a new approach for identifying autoregressive models from a finite number of
measurements, in presence of additive and uncorrelated white noise. As a major novelty, the proposed approach
deals with frequency domain data. In particular, two different frequency domain algorithms are proposed. The
first algorithm is based on some theoretical results concerning the so–called dynamic Frisch Scheme. The second
algorithm maps the AR identification problem into a quadratic eigenvalue problem. Both methods resemble in
many aspects some other identification algorithms, originally developed in the time domain. The features of the
proposed methods are compared each other and with those of other time domain algorithms by means of Monte
Carlo simulations.

Key–Words:System identification; Autoregressive models; Frisch Scheme; Discrete Fourier Transform.

1 Introduction

Autoregressive (AR) models are commonly used in
the field of spectral analysis and find applications in
a wide range of engineering problems, like, for exam-
ple, speech analysis, radar and sonar systems, vibra-
tion monitoring, astronomy, geophysics and seismol-
ogy.

In spectral analysis literature [1, 2, 3] two dif-
ferent methodologies are usually described. The
first methodology contains the classical nonparamet-
ric approaches, involving periodogram and correlo-
gram methods. The second methodology contains
the parametric approaches, also called model–based.
These methods postulate a model for the data, that
constitutes a means for parameterizing the spectrum.
The spectral estimation problem is thus reduced to the
estimation of the parameters of the model.

Both methodologies may offer advantages and
disadvantages in order to obtain an accurate spectrum
estimation with high resolution. They can be distin-
guished by the fact that nonparametric methods treat
frequency domain data, while parametric methods are
commonly developed in the time domain.

Within the class of parametric methods, AR mod-
els are widely used since they constitute the simplest
description of a stochastic process and offer the possi-
bility for simple and fast parameter identification pro-
cedures, based on least squares estimation schemes.

In many practical situations, however, simple AR
models are not adequate since the signals are cor-
rupted by noise. In these cases, classical AR identi-
fication methods give misleading results; in fact it can
be proved that the estimated AR poles are biased to-
ward the center of the unit circle, leading thus to a
smoothed spectrum [4].

Several approaches have been developed to re-
cover the AR parameters from noisy measurements.
Since noisy AR processes admit an equivalent ARMA
representation [5], the usual approaches for solving
this problem consist in standard ARMA parameter es-
timators, like prediction errors methods [6].

Another classical approach for the identification
of AR plus noise models consists in solving the so–
called high–order Yule–Walker (HOYW) equations
[7]. This method requires the knowledge of the auto-
correlation function for high lags and is characterized
by a poor estimate of the parameters. To compen-
sate the estimation errors, an overdetermined set of
HOYW equations is often considered [8]. In [9, 10] it
has been shown that better results can be obtained by
using both low and high order YW equations. Start-
ing from this set up, in [11] a new method has been
proposed, related to signal/noise subspace techniques.
This approach uses a modified set of low and high
order YW equations and maps the original problem
into a quadratic eigenvalue problem. The estimates of
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the AR parameters and of the noise variance are thus
obtained by solving the associated generalized eigen-
value problem.

A different approach has been proposed in [12,
13, 14]. In these papers the AR plus noise iden-
tification problem is solved by using the theoreti-
cal results concerning the so–called dynamic Frisch
Scheme [15, 16] which was originally developed for
the identification of errors–in–variables systems.

In this work the identification of AR systems cor-
rupted by additive white noise is addressed by using
a frequency domain approach. In particular, two dif-
ferent frequency domain algorithms are proposed and
their features are compared with each other and with
those of other time domain methods.

In presence of non–periodic signals of finite
length, leakage problems have been always consid-
ered to be the major drawback for frequency domain
methods. In fact, leakage errors are present even in ab-
sence of disturbing noise. In this respect, an important
result has been given in [17], where it has been proved
that for a linear, discrete–time system, described by a
rational transfer function of finite dimensions, the dis-
crete Fourier transforms (DFTs) of the input–output
signals are exactly linked by an extended model that
includes also a polynomial term of finite order, that
takes into account the leakage and transient effects.

From a theoretic point of view, this result has been
formalized in [18], where the full equivalence be-
tween time and frequency domain identification meth-
ods has been proved, also for finite data records. How-
ever, from the practical point of view, the decision to
implement a time or a frequency domain algorithm
can strongly depend on the user choices and on the
specific applications.

Frequency domain techniques for system identi-
fication are described in [19]. In most experimental
situations the observations are collected as samples of
time signals, so that a Fourier transformation is re-
quired before implementing a frequency domain al-
gorithm. However, there exist occasions in which the
data are more easily available as frequency samples.
For example, in some experimental situations it may
occur that the data are collected by a frequency ana-
lyzer which directly provides the Fourier transforms
of the time signals. This situation is particularly com-
mon in vibrational analysis of mechanical systems
[20].

Frequency domain approaches are characterized
by some specific features that are not present in the
time domain methods [21]. In particular, in the fre-
quency domain the filtering operations are quite sim-
ple to implement, in fact they can be reduced to the se-
lection of appropriate (weighted) frequencies in a lim-
ited band of the signal spectrum. As a consequence,

frequency domain approaches allow to solve in a more
direct and simple way all the problems where a trade–
off between frequency resolution and noise level is
present. This feature can be of great advantage in the
identification of noisy AR processes with narrowband
spectrum, as will be illustrated by a numerical exam-
ple.

The organization of the paper is as follows. Sec-
tion 2 defines the AR plus noise identification prob-
lem in the frequency domain, while Section 3 intro-
duces a novel frequency domain description of the
AR processes. In Section 4 the identification prob-
lem is reformulated as a Frisch Scheme problem and
the search for the solution is analyzed within this con-
text. Sections 5 describes a possible identification cri-
terion, that can be directly formulated in the frequency
domain. In particular, this criterion takes advantage
of a set of equations similar to the HOYW equations.
For this reason the method can be considered the fre-
quency counterpart of the time domain approach pro-
posed in [13, 14]. In Section 6, it is shown how the
AR identification problem can be reformulated as a
quadratic eigenvalue problem involving only the out-
put noise variance. The obtained quadratic eigenvalue
problem is thus solved by mapping it into a gener-
alized eigenvalue problem. The method can be con-
sidered the frequency counterpart of the time domain
approach proposed in [11]. In Section 7 the effective-
ness of the proposed methods is verified by means of
Monte Carlo simulations. It is shown that this new
frequency domain methodology is characterized by
high frequency resolution properties and is particu-
larly suited for the identification of narrowband AR
systems with close and sharp spectral peaks. Finally
some concluding remarks are reported in Section 8.

2 Statement of the problem
Consider the following noisy AR model, of ordern,
described by the equations

x(t) = −α1 x(t− 1)− · · · − αn x(t− n) + e(t)
(1)

y(t) = x(t) + w(t) (2)

wherex(t) is the output of the noise–free AR model,
driven by the white noise processe(t). The available
observationy(t) is affected by the noise processw(t).

The following assumptions are made.

A1. e(t) is a zero–mean ergodic white process, with
unknownvarianceσ∗

e .

A2. The ordern of the AR model is assumed asa
priori known.
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A3. The additive noisew(t) is a zero–mean ergodic
white process, uncorrelated withe(t), with un-
knownvarianceσ∗

w.

Let {y(t)}N−1
t=0 be a set of noisy observations atN

equidistant time instants. The corresponding Discrete
Fourier Transform (DFT) is defined as

Y (ωk) =
1√
N

N−1∑

t=0

y(t) e−jωkt, (3)

whereωk = 2πk/N andk = 0, . . . , N−1. In the fre-
quency domain, the problem under investigation can
be stated as follows.

Problem 1. LetY (ωk) be a set of noisy measurements
generated by an AR plus noise system of type (1)–
(2), under assumptions A1–A3, whereωk = 2πk/N
andk = 0, . . . , N − 1. Estimate the AR parameters
αi (i = 1, . . . , n) and the noise variancesσ∗

e , σ∗
w.

3 A frequency domain setup
In this section a new frequency domain description for
the noisy AR model (1)–(2) is introduced. This setup
has been originally developed in [22, 23, 24] with ref-
erence to the identification of errors–in–variables sys-
tems.

Equation (1) can be rewritten as

A(z−1)x(t) = e(t) (4)

whereA(z−1) is a polynomial in the backward shift
operatorz−1

A(z−1) = 1 + α1 z
−1 + · · · + αn z

−n. (5)

Similarly to equation (3), letE(ωk), X(ωk) be
the DFTs of the signalse(t), x(t) appearing in equa-
tion (4). It is a well–known fact [17] that for finiteN ,
even in absence of noise, the DFTsE(ωk) andX(ωk)
exactly satisfy an extended model that includes also a
transient term, i.e.

A(e−jωk)X(ωk) = E(ωk) + T (e−jωk), (6)

whereT (z−1) is a polynomial of ordern− 1

T (z−1) = τ0 + τ1 z
−1 + · · ·+ τn−1 z

−n+1 (7)

that takes into account the effects of the initial and
final conditions of the experiment.

By considering the whole number of frequencies,
eq. (6) can be rewritten in a matrix form. For this
purpose, introduce the parameter vectors

θα = [1α1 . . . αn]
T (8)

θτ = [τ0 . . . τn−1]
T . (9)

and define the following vectorΘ, with dimension
p = 2n+ 1, containing the whole number of parame-
ters

Θ = [ θTα − θTτ ]T . (10)

In absence of noise, the AR parameters can be recov-
ered by means of the following procedure. Define the
row vectors

Zn+1(ωk) = [1 e−jωk . . . e−j(n−1)ωk e−jnωk ]
(11)

Zn(ωk) = [1 e−jωk . . . e−j(n−1)ωk ], (12)

whose entries are constructed with multiple frequen-
cies ofωk, and construct the following matrices

Π =






Zn+1(ω0)
...

Zn+1(ωN−1)




 Ψ =






Zn(ω0)
...

Zn(ωN−1)




 .

(13)

of dimensionN × (n + 1) andN × n, respectively.
With the DFT samplesX(ωk) construct the following
N ×N diagonal matrix

V diag
X = diag [X(ω0), X(ω1), . . . ,X(ωN−1)] (14)

and compute theN × (n+ 1) matrix

ΠX = V diag
X Π. (15)

Then, construct theN × p matrix

ΦX = [ΠX | Ψ ]. (16)

Thus, eq. (6) fork = 0, . . . , N − 1 can be rewritten
as

ΦX Θ = VE , (17)

whereVE = [E(ω0), E(ω1), . . . , E(ωN−1)]
T .

Define now thep× p matrix

ΣX =
1

N
(ΦH

X ΦX), (18)

where(·)H denotes the transpose and conjugate oper-
ation.

Because of assumption A1, whenN → ∞, from
(17) it follows that

Σ̄X Θ = 0, (19)

whereΣ̄X is defined as

Σ̄X = ΣX − diag
[
σ∗

e 0 . . . 0
︸ ︷︷ ︸

2n

]
. (20)
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Remark 1. Sincex(t) is generated by the AR model
(4), relation (6) cannot be satisfied by a polynomial
A(z−1) with order lower thann. Therefore, matrix
Σ̄X in (20) is positive semidefinite, with only one null
eigenvalue, i.e.

Σ̄X ≥ 0 dimker Σ̄X = 1. (21)

In presence of noise, the previous procedure can be
modified as follows. With the DFT samples (3) con-
struct theN ×N diagonal matrix

V diag
Y = diag [Y (ω0), Y (ω1), . . . , Y (ωN−1)] (22)

and compute the matrix

ΠY = V diag
Y Π . (23)

Then, construct theN × p matrix

ΦY = [ΠY | Ψ ] . (24)

Because of Assumptions A3, whenN → ∞, we ob-
tain the followingp× p positive definite matrix

ΣY =
1

N

(
ΦH
Y ΦY

)
= ΣX +

[
σ∗
w In+1 0
0 0n

]

, (25)

where0n is the null square matrix of dimensionn.
By combining (20) and (25), it follows that

ΣY = Σ̄X + Σ̃∗, (26)

where

Σ̃∗ =





σ∗
s 0 0
0 σ∗

w In 0
0 0 0n



 (27)

and
σ∗

s = σ∗

w + σ∗

e . (28)

From (19) and (26), the parameter vectorΘ, defined
in (10), can be obtained as the kernel of

(
ΣY − Σ̃∗

)
Θ = 0, (29)

after normalizing the first entry to 1.

Remark 2. It can be observed that fork =
0, . . . ,floor

(
N−1
2

)

Y (ωN−1−k) =
1√
N

N−1∑

t=0

y(t) e−j N−1−k
N

2πt

=
1√
N

N−1∑

t=0

y(t) e−j
−(1+k)

N
2πt = Y ∗(ω1+k), (30)

whereY ∗(·) is the conjugate ofY (·). Consequently, a
redundant information has been used in the definition
(25) of ΣY and only the firstN/2 samplesY (ωk),
k = 0, . . . ,floor

(
N−1
2

)
, could be considered. How-

ever, from simulation experiences the usage of the
whole data setY (ωk), k = 0, . . . , N − 1, leads to bet-
ter results, especially under the conditions described
in Remark 3.

4 Analysis in the Frisch Scheme con-
text

Starting from knowledge of the noisy matrixΣY , the
determination of the system parameter vectorΘ and
of the noise variancesσ∗

e , σ∗
w can be seen as a Frisch

Scheme problem [15, 16].
Consider the set of non–negative definite diagonal

matrices of type

Σ̃ = diag
[
σs, σw In, 0n

]
(31)

such that

ΣY − Σ̃ ≥ 0 det
(
ΣY − Σ̃

)
= 0. (32)

The following statements can be proved. The proofs
can be found in [15] and [25].

Theorem 1. The set of all matrices̃Σ satisfying con-
ditions (32) defines the pointsP = (σs, σw) of a con-
vex curveS(ΣY ) belonging to the first quadrant of the
noise spaceR2 whose concavity faces the origin. At
every pointP = (σs, σw) can be associated the noise
matrix Σ̃(P ) and the coefficient vectorΘ(P ) satisfy-
ing the relation

(

ΣY − Σ̃(P )
)

Θ(P ) = 0. ♦ (33)

Theorem 2. Because of the relations (27)–(29), the
point P ∗ = (σ∗

s , σ
∗
w), associated with the true vari-

ances ofe(t) andw(t), belongs toS(ΣY ) and the cor-
responding coefficient vectorΘ(P ∗) is characterized
(after a normalization of its first entry to1) by the true
system parameter vector, i.e.Θ(P ∗) = Θ. ♦

In Figure 1 an example ofS(ΣY ) is reported.
Note that the points(σs, σw) of the curve withσs ≤
σw (dotted line) are non admissible because they do
not satisfy the conditionσe = σs − σw > 0. The set
of admissible solutions (continuous line) is thus de-
limited by the straight linesσw = σs andσw = 0.

Theorem 3.Partition the matrixΣY as follows

ΣY =

[
σ11 Σ12

Σ21 Σ22

]

(34)

whereΣ22 is the square matrix of dimension2n. The
intersection ofS(ΣY ) with the σs axis is the point
PB = (σmax

s , 0) given by the least squares solution

σmax
s =

det (ΣY )

det (Σ22)
. (35)

Partition the matrixΣY instead as follows

ΣY =

[
Σ11 Σ12

Σ21 Σ22

]

(36)
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Figure 1: Typical shape ofS(ΣY ).

whereΣ22 is the square matrix of dimensionn. The
intersection ofS(ΣY ) with the straight lineσw = σs
is the pointPA = (σmax

w , σmax
w ), given by the solution

σmax
w = min eig

(
Σ11 − Σ12 Σ

−1
22 Σ21

)
. (37)

Since the pointPA corresponds toσe = 0, it is not a
solution of Problem 1.♦

The next theorem describes a parametrization of
the curveS(ΣY ) that plays an important role in the
practical implementation of the identification algo-
rithm [16].

Theorem 4. Let ξ = (ξ1, ξ2) be a generic point of
the first quadrant ofR2 andr the straight line from
the origin throughξ (see Fig. 1). Its intersection with
S(ΣY ) is the pointP = (σs, σw) given by

σs =
ξ1
λM

σw =
ξ2
λM

, (38)

where
λM = max eig

(

Σ−1
Y Σ̃ξ

)

(39)

Σ̃ξ =





ξ1 0 0
0 ξ2 In 0
0 0 0n



 . ♦ (40)

Remark 3. The described procedure allows to con-
struct the curveS(ΣY ) in the noise space(σs, σw)
also when only a subset of the whole frequency range
is used, on condition that the number of the selected
frequencies is large enough. This subset must be cho-
sen by the user on the basis ofa priori knowledge of
the frequency properties of the AR model. In practice,
taking into account the observations of Remark 2, two

distinct sets of frequencies are jointly considered, the
setW1 = [ωi, ωf ], with i ≥ 0 andf ≤ floor

(
N−1
2

)

and the setW2 = [ωN−1−f , ωN−1−i], for a total num-
ber of the2L frequencies, withL = f − i + 1. By
considering a new matrixΦY with 2L rows, expres-
sions (25)–(27) must be modified as follows

ΣY =
1

2L

(
ΦH
Y ΦY

)
= Σ̄X + Σ̃∗, (41)

where

Σ̃∗ =
N

2L





σ∗
s 0 0
0 σ∗

w In 0
0 0 0n



 . (42)

5 A criterion based on HOYW–type
equations

As asserted in Theorem 2, the determination of the
pointP ∗ onS(ΣY ) leads to the solution of Problem 1.
For this purpose a search criterion must be introduced.
Unfortunately, the theoretic properties ofS(ΣY ) de-
scribed so far do not allow to distinguish the pointP ∗

from the other points of the curve.
In this section we will describe a possible search

criterion. This criterion is analogue to that reported
in [13] with reference to time domain identification of
AR plus noise models.

Select the integerq ≥ 2n. Analogously to (11),
consider the row vector

Zq+n+1(ωk) = [1 e−jωk . . . e−j(n+q)ωk ] (43)

and extract from it theq–dimensional row vector

Zh
q (ωk) = [e−j(n+1)ωk . . . e−j(n+q)ωk ]. (44)

Then, construct the followingN × q matrix

Πh =






Zh
q (ω0)

...
Zh
q (ωN−1)




 . (45)

and compute theN × q matrix

Φh
X = V diag

X Πh. (46)

Define now theq × p matrix

Σh
X =

1

N

(
(Φh

X)H ΦX

)
, (47)

Because of assumption A1, whenN → ∞, it follows
that

Σh
X Θ = 0. (48)
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In an analogous way, we can compute theN×q matrix

Φh
Y = V diag

Y Πh (49)

and define theq × p matrix

Σh
Y =

1

N

(
(Φh

Y )
H ΦY

)
. (50)

Because of Assumptions A3, whenN → ∞, it results

Σh
Y = Σh

X . (51)

It is thus possible to write

Σh
Y Θ = 0. (52)

Equation (52) constitutes a set ofq equations, ana-
logue to the time domain high order Yule–Walker
equations, that does not involve the output noise vari-
anceσ∗

w.
Thanks to this property the search forP ∗ along

S(ΣY ) can be performed by introducing the following
cost function

J(P ) = ‖Σh
Y Θ(P )‖22 = ΘT (P )(Σh

Y )
H Σh

Y Θ(P ).
(53)

Whenq ≥ 2n the cost functionJ(P ) in (53) exhibits
the following properties

i) J(P ) ≥ 0

ii) J(P ) = 0 ⇔ P = P ∗.

In fact, if q ≥ 2n the conditions stated in [26] hold
and the equation (52) admits a unique solution, corre-
sponding to the true system parameterΘ.

On the basis of the previous considerations, it is
possible to develop an algorithm for the identification
of AR plus noise models. A detailed description of
the procedure can be found in [25]. In the following
this algorithm is denoted as Alg1-FD.

6 A subspace approach
The approach proposed in this section is analogue to
that described in [11] and exploits the set of equations
(52) together with the equations (29). It will be shown
that the AR plus noise identification problem can be
mapped into a quadratic eigenvalue problem that, in
turn, can be solved as a generalized eigenvalue prob-
lem. The system parameters are thus estimated in one
shot, without any search procedure.

Let us partition matrixΣY , defined in (25), as fol-
lows

ΣY =






σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33




 , (54)

whereσ11 is a scalar andΣ22, Σ33 are square matrices
of dimensionn.

By analyzing the structure of matrix (27), it can
be observed that, whenN → ∞, the last2n equations
in (29) can be written as

[
Σ21 Σ22 − σ∗

w In Σ23

Σ31 Σ32 Σ33

]

Θ = 0. (55)

Equation (55) contains2n+ 2 unknowns, i.e.σ∗
w and

the entries ofΘ. By choosingq ≥ 2, the equations
(52) can be combined with the equations (55) in or-
der obtain the following nonlinear system of2n + q
equations





Σ21 Σ22 − σ∗
w In Σ23

Σ31 Σ32 Σ33

Σh
Y



 Θ = 0. (56)

This set of equations can be rewritten as

(S − σ∗

w J)Θ = 0, (57)

where

S =





Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

Σh
Y



 (58)

J =





0n×1 In 0n
0n×1 0n 0n

0q×(2n+1)



 . (59)

Multiplying both sides of (57) by(S − σ∗
w J)T leads

to the equation
(
A2 σ

2∗
w +A1 σ

∗

w +A0

)
Θ = 0, (60)

where

A0 = STS (61)

A1 = −
(
STJ + JTS

)
(62)

A2 = JTJ. (63)

The coefficients ofΘ can thus be estimated by solving
the following quadratic eigenvalue problem (QEP)

(
A2 λ

2 +A1 λ+A0

)
v = 0. (64)

The set of4n+ 2 eigenvalues solving (64) are real or
appear in complex conjugate pairs and can also be in-
finite [27]. If the system is identifiable and the number
of dataN → ∞, the only real eigenvalue (with multi-
plicity two) that solves (64) isλ = σ∗

w [11]. It is thus
possible to conclude that the solution of the identifi-
cation problem is the eigenvector associated with the
only real eigenvalue that solves (64).
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The QEP (64) can be solved in several ways [27].
The easiest way to solve it consists in rewriting equa-
tion (64) as

A2 v
′ λ+A1 v λ+A0 v = 0, (65)

where v′ = λ v. Thus, the following (4n + 2)–
dimensional linear generalized eigenvalue problem
(GEP) can be derived [27]

(P − λQ) η = 0, (66)

where

P =

[
A0 0
0 I2n+1

]

(67)

Q =

[
−A1 −A2

I2n+1 0

]

(68)

η =
[
vT v′

T ]T
. (69)

The only real eigenvalue solving (66) isσ∗
w and the

first 2n + 1 entries of the corresponding eigenvector
η∗ are, after a normalization of the first entry to 1, the
entries ofΘ, i.e.

η0 =
η∗

η∗(1)
=

[
ΘT σ∗

wΘ
T
]T

. (70)

Since only a finite numberN of data is available, all
the eigenvalues solving (66) will exhibit, in general,
a small imaginary part. A criterion leading to good
results consists in choosing the eigenvalue having the
smallest modulus [11].

On the basis of the previous considerations, it is
possible to develop a second algorithm for the identi-
fication of AR plus noise models. A detailed descrip-
tion of the procedure can be found in [25]. In the fol-
lowing this algorithm is denoted as Alg2-FD.

7 Numerical examples
In this section, the effectiveness of the proposed iden-
tification algorithms is tested by means of numerical
simulations.

Example 1. The proposed algorithms have been
tested on sequences generated by the following AR
model of ordern = 4, already considered in [13]

x(t) =2.4x(t − 1)− 3.03x(t − 2) + 1.986x(t − 3)

− 0.6586x(t − 4) + e(t), (71)

wheree(t) is a white noise with varianceσ∗
e = 1.

A Monte Carlo simulation of 100 runs has been
performed by using, in every run,N = 1000 samples

of the noisy outputy(t). The variance of the obser-
vation noise isσ∗

w = 4, corresponding to a Signal to
Noise Ratio (SNR) of about 10 dB, where the SNR is
defined as

SNR = 20 log10

√

E[x2(t)]

E[w2(t)]
= 10 log10

rx(0)

σ∗
w

dB.

(72)
Table 1 reports the empirical means of the system pa-
rameter estimates and of the noise variance estimates,
together with the corresponding standard deviations,
obtained with Alg1-FD, and with Alg2-FD. The re-
sults are also compared with those obtained by the
corresponding time domain algorithms described in
[13] and [11] respectively, and denoted with Alg1-TD
and Alg2-TD.

The table shows the results obtained whenq is
equal to the minimum number of equations required
for the algorithms’ implementation. It can be ob-
served that Alg1-FD and Alg1-TD yield comparable
results. Moreover, it can be noted that Alg2-FD does
not yield satisfactory results whenq is fixed to the
minimum admissible value (third line in the Table).
However, it is sufficient to selectq = n for obtaining
parameter estimates that are comparable with those
obtained by Alg2-TD and by the other methods.

In Table 1, the last column reports the mean value
(in ms) of the time requested to carry out a single run
of the Monte Carlo simulation. This value strongly
depends on the specific features of the PC used for
the simulations and, moreover, it may slightly change
in different Monte Carlo sessions. However, it pro-
vides the correct order of magnitude of the computa-
tional efficiency of the algorithms and allows to make
a comparison of their performances.

It can be observed that the estimation accuracy
of the frequency domain algorithms Alg1-FD, Alg2-
FD is comparable to that of the corresponding time
domain algorithms Alg1-TD, Alg2-TD. However, as
far as the computational efficiency is concerned, it
must be observed that Alg2 is always much faster than
Alg1, both in time and frequency domain. Moreover,
the time domain algorithms are, approximatively, 4–5
times faster than the corresponding frequency domain
implementations. Of course, in this respect, particular
attention must be given to the coding. For example,
it is worth noting that matricesΠY (23) andΦh

Y (49)
must not be computed with the reported expressions,
since they are highly time consuming.

It can be conjectured that the major computational
burden for the frequency domain approaches is mainly
due to the following two facts: the preliminary DFT
operations on the data and the computations devel-
oped in the complex domain. This aspect is highly
compensated by the fact that in the frequency do-
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Table 1: True and estimated values of parameters and variances for Alg1-FD, Alg2-FD and Alg1-TD, Alg2-TD.
SNR≈ 10 dB andN = 1000.

α1 α2 α3 α4 σ∗

e
σ∗

w
Time (ms)

true −2.4 3.03 −1.986 0.6586 1 4

Alg1 − FD (q = 8) −2.3794 ± 0.1152 2.9969 ± 0.1693 −1.9569 ± 0.1278 0.6563 ± 0.0281 1.0921 ± 0.3272 4.0135 ± 0.1561 31.5

Alg1 − TD (q = 4) −2.3864 ± 0.0325 3.0049 ± 0.1071 −1.9613 ± 0.1369 0.6553 ± 0.0960 0.9912 ± 0.0546 3.9646 ± 0.2184 8.0

Alg2 − FD (q = 2) −2.3158 ± 0.5049 2.9086 ± 0.8811 −1.8920 ± 0.7709 0.6461 ± 0.2497 1.5656 ± 2.9957 3.9568 ± 0.2557 4.5

Alg2 − FD (q = 4) −2.3913 ± 0.0367 3.0267 ± 0.0776 −1.9877 ± 0.0754 0.6714 ± 0.0366 1.0049 ± 0.4341 3.9769 ± 0.2297 5.5

Alg2 − TD (q = 4) −2.3924 ± 0.0376 3.0234 ± 0.0732 −1.9824 ± 0.0688 0.6672 ± 0.0317 1.0256 ± 0.3870 3.9758 ± 0.2130 1.2

Table 2: True and estimated values of the AR parameters for Alg1-FD, Alg2-FD and Alg1-TD, Alg2-TD. SNR≈
10 dB andN = 1000.

α1 α2 α3 α4 Time (ms)

True values −2.7607 3.8106 −2.6535 0.9238

Alg1 − FD (q = 8) F1 = [ 0 0.5 ] −2.0911 ± 0.5938 2.4295 ± 1.3386 −1.3965 ± 1.3103 0.5162 ± 0.5371 35.0

Alg1 − TD (q = 4) −2.3307 ± 1.5771 2.7119 ± 3.9835 −1.5336 ± 4.0573 0.4498 ± 1.7307 28.2

Alg2 − FD (q = 4) F1 = [ 0 0.5 ] −2.1589 ± 1.2050 2.8041 ± 2.3264 −1.8611 ± 2.1528 0.7729 ± 0.8505 5.6

Alg2 − TD (q = 4) −2.7820 ± 0.5854 3.9006 ± 1.0575 −2.7603 ± 0.9029 0.9813 ± 0.2983 1.2

Alg1 − FD (q = 8) F1 = [ 0.05 0.2 ] −2.7223 ± 0.0188 3.7624 ± 0.0315 −2.6323 ± 0.0247 0.9372 ± 0.0053 29.0

Alg2 − FD (q = 4) F1 = [ 0.05 0.2 ] −2.7434 ± 0.0802 3.7865 ± 0.2156 −2.6415 ± 0.2341 0.9305 ± 0.1232 2.6
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Figure 2: True TF: red, solid; Alg1-FD estimate:
green, dashed; Alg2-FD estimate: blue, dash–dotted.

main the filtering operations can be implemented in a
straightforward way, with great benefits for the iden-
tification, as it will be shown in the next example.

Example 2. In order to verify the selective properties
described in Remark 3, the following AR model of
ordern = 4, also proposed in [9], has been considered

x(t) = 2.7607x(t − 1)− 3.8106x(t − 2)

+ 2.6535x(t − 3)− 0.9238x(t − 4) + e(t),
(73)

wheree(t) is a white noise with varianceσ∗
e = 1.

The model (73) exhibits two pairs of com-
plex poles, withp1,2 = 0.98 e±j 0.69 and p3,4 =
0.98 e±j 0.88. It describes a narrowband AR system
with close and sharp spectral peaks, at the frequencies
f1 = 0.69/(2π) = 0.11 andf2 = 0.88/(2π) = 0.14
(see Fig. 2).

This model is particularly difficult to identify un-
der low SNR conditions and poor estimates of the sys-
tem parameters are obtained if the SNR is lower than
10 dB.

As a proof of this assertion, a first Monte Carlo
simulation of 100 independent runs have been carried
out, by considering noisy sequences ofN = 1000
samples. The variance of the observation noise has
been fixed toσ∗

w = 90, corresponding to a SNR of
about 10 dB.

The first four lines of Table 2 report the empiri-
cal means of the system parameter estimates together
with the corresponding standard deviations, obtained
with the considered methods. For the sake of sim-
plicity, the estimates ofσ∗

e andσ∗
w are not reported. It

can be observed that Alg1-TD, Alg1-FD and Alg2-FD
have unsatisfactory performances, with bad estimates
of the parameters, while Alg2-TD exhibits a greater
robustness against noise and still yields a satisfactory
result.

In the previous simulations all the availableN
data, in the whole frequency range[0 0.5], have been
used for the identification. However, it can be ob-
served that the frequency domain methods Alg1-FD
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Table 3: True and estimated values of the AR parameters and varianceσe for Alg1-FD and Alg2-FD. SNR≈ −5
dB andN = 1000.

α1 α2 α3 α4 σ∗

e
Time (ms)

True values −2.7607 3.8106 −2.6535 0.9238 1

Alg1 − FD (q = 8) F1 = [ 0.05 0.2 ] −2.5223 ± 0.0360 3.3818 ± 0.0469 −2.3656 ± 0.0303 0.8805 ± 0.0110 −− 35.0

Alg2 − FD (q = 4) F1 = [ 0.05 0.2 ] −2.5137 ± 0.2086 3.3189 ± 0.4673 −2.2576 ± 0.4652 0.8126 ± 0.2287 −− 2.6

Alg1 − FD (q = 8) F1 = [ 0.08 0.16 ] −2.8217 ± 0.0178 3.9402 ± 0.0254 −2.7838 ± 0.0171 0.9734 ± 0.0039 −− 32.5

Alg2 − FD (q = 4) F1 = [ 0.08 0.16 ] −2.8046 ± 0.0875 3.8866 ± 0.2017 −2.7181 ± 0.1996 0.9400 ± 0.0851 1.0465 ± 0.6050 2.0

and Alg2-FD yield good parameter estimates when
the AR model is identified by using only the data be-
longing to specific frequency windows defined by the
user,F1 = [fi, ff ] andF2 = [1 − ff , 1 − fi], with
fi = ωi/(2π) ≥ 0 andff = ωf/(2π) ≤ 0.5.

The choice ofF1 (andF2) must be linked to the
spectral properties of the AR system to be identified.
In particular, for the considered example, the window
F1 will contain the two frequenciesf1 and f2 that
characterize the four poles of model (73).

In order to verify this property, the AR system
has been identified by using only the2L = 300 fre-
quencies in the windowsF1 = [fi, ff ] and F2 =
[1 − ff , 1 − fi], wherefi = 0.05 andff = 0.2. The
last two lines of Table 2 report the identification re-
sults obtained with Alg1-FD and Alg2-FD. It can be
noted that in this case both methods give good esti-
mates of the AR parameters. Observe that the compu-
tational efficiency of the algorithms is now improved,
since only2L < N data are used for the identification.

The choice of the width of the windowF1 is
linked to the value ofσ∗

w. When more amount of noise
w(t) is present on the data then morea priori informa-
tion about the spectral properties of the AR system is
required. In particular, for the considered example,
whenσ∗

w increases a more accurate information about
the exact positions off1 andf2 is required.

As a proof of this assertion, two further Monte
Carlo simulations of 100 independent runs have been
carried out, withN = 1000. In this case, however,
the variance of the observation noise has been fixed to
σ∗
w = 2700, corresponding to a SNR of about−5 dB.

Of course, under these very low SNR conditions also
Alg2-TD completely fails the estimates; the results are
not reported.

In the first simulation the AR system has been
identified by using the same windowF1 = [0.05 0.2],
as before. In the second simulation a more narrow
windowF1 = [0.08, 0.16] has been used, with a total
number of2L = 160 frequencies.

The results of these simulations are reported in
Table 3. It can be observed that in the first simulation
both methods yield worse estimates for the AR param-

eters, while in the second simulation they give good
estimates, again. As a concluding remark, note that
Alg2-FD has to be preferred to Alg1-FD. Not only
it is faster, but it gives also a correct estimate ofσ∗

e ,
while Alg1-FD completely fails this estimate, with a
consequent error for the static gain of1/ |A(e−jωk )|,
see Fig. 2. The estimates ofσ∗

w are not reported, since
they are completely wrong.

With reference to the last simulation, Figure 2 re-
ports the true value of1/ |A(e−jωk)|dB , together with
the means of the transfer function estimates, obtained
with Alg1-FD and Alg2-FD. The advantageous effects
of filtering are evident for both methods, in fact they
succeed in the identification of the two peaks at the
frequenciesf1 andf2.

8 Conclusions
In this paper a novel frequency domain approach has
been proposed for the identification of AR models af-
fected by additive white noise. In particular, two dif-
ferent frequency domain algorithms have been pro-
posed and their estimation properties have been tested
and compared by means of Monte Carlo simulations.
The numerical results have confirmed the good perfor-
mances of the new methodology and have shown its
effectiveness in the identification of narrowband AR
systems with close and sharp spectral peaks.

References
[1] L. Marple, Digital Spectral Analysis with Appli-

cations, Prentice–Hall, Englewood Cliffs, New
Jersey, 1987.

[2] S. M. Kay, Modern Spectral Estimation,
Prentice–Hall, Englewood Cliffs, New Jersey,
1988.

[3] P. Stoica and R. Moses,Introduction to Spectral
Analysis, Prentice–Hall, Upper Saddle River,
New Jersey, 1997.

[4] S. M. Kay, The effects of noise on the autore-
gressive spectral estimator.IEEE Transactions

WSEAS TRANSACTIONS on SIGNAL PROCESSING Umberto Soverini, Torsten Söderström

E-ISSN: 2224-3488 227 Volume 12, 2016



on Acoustics, Speech and Signal Processing.27,
1979, pp. 478–485.

[5] M. Pagano, Estimation of models of autore-
gressive signal plus white noise.The Annals of
Statistics.2, 1974, pp. 99–108.

[6] A. Nehorai and P. Stoica, Adaptive algorithms
for constrained ARMA signals in the presence of
noise.IEEE Transactions on Acoustics, Speech
and Signal Processing.36, 1988, pp. 1282–
1291.

[7] Y.T. Chan and R.P. Langford, Spectral estima-
tion via the high–order Yule–Walker equations.
IEEE Transactions on Acoustics, Speech and
Signal Processing.30, 1982, pp. 689–698.

[8] J. Cadzow, J. Spectral estimation: an overdeter-
mined rational model equation approach.Pro-
ceedings of the IEEE.70, 1982, pp. 907–939.

[9] S. M. Kay, Noise compensation for autoregres-
sive spectral estimates.IEEE Transactions on
Acoustics, Speech and Signal Processing.28,
1980, pp. 292–303.

[10] K.K. Paliwal, A noise–compensated long cor-
relation matching method for AR spectral esti-
mation of noisy signals.Signal Processing.15,
1988, pp. 437–440.

[11] C. E. Davila, A subspace approach to estimation
of autoregressive parameters from noisy mea-
surements.IEEE Transactions on Signal Pro-
cessing.46, 1998, pp. 531–534.

[12] R. Diversi, R. Guidorzi and U. Soverini, A new
estimation approach for AR models in presence
of noise. Preprints of the 16-th IFAC World
Congress.Prague, Czech Republic, 2005.

[13] R. Diversi, R. Guidorzi and U. Soverini, A
noise–compensated estimation scheme for AR
processes.Proc. of the 44-th IEEE Confer-
ence on Decision and Control and 8–th Euro-
pean Control Conference.Seville, Spain, 2005,
pp. 4146–4151.

[14] R. Diversi, R. Guidorzi and U. Soverini, Identi-
fication of autoregressive models in the presence
of additive noise.Int. Journal of Adaptive Con-
trol and Signal Processing., 22 (2008) 465–481.

[15] S. Beghelli, R. Guidorzi and U. Soverini, The
Frisch scheme in dynamic system identification.
Automatica,26, 1990, pp. 171–176.

[16] R. Guidorzi, R. Diversi and U. Soverini, The
Frisch Scheme in algebraic and dynamic iden-
tification problems. Kybernetika, 44, 2008,
pp. 585–616.

[17] R. Pintelon, J. Schoukens and G. Vandersteen,
Frequency domain system identification using
arbitrary signals.IEEE Transactions on Auto-
matic Control.42, 1997, pp. 1717–1720.
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